
Oregon Quant GroupOregon Quant Group

Soft-Actor Critic for Strategy Agnostic Hourly
Trading

Ethan Reinhart

05-28-2025

1

Agenda

01
02
03
04
05
06

Soft-Actor Critic Architecture

Data Aggregation

Feature Engineering

Autocorrelation

Reward Shaping

Results

2

Thesis

Reinforcement Learning provides the capability of an agent to
execute actions based on observed sequences to maximize its
reward.
Training an agent on hourly stocks prices of curated tickers
combines predictive ability of Deep Learning with entropy and
dynamic, policy-ambiguous decision making.
A traditional alpha reward allows for ROI maximization with
dynamic regime switching based on learned experiences.

3

Soft-Actor Critic

1. Reinforcement Learning
2. Different from Q-Learning (single action vs discrete action space vector)
3. Introduces entropy balance to force exploration

a. Entropy: state disorder

4. Off-Policy actor critic - updates from replay buffer after each episode
5. Basic premise:

a. Critic predicts expected value of taking action in current state

b. Actor maximizes expected value + entropy
i. Max reward with max exploration (great for avoiding local minima)

3. Target Q-networks
a. Slowly updated copies of the two critic networks that are updated with Polyak

averaging
b. Tau controls update:

4. Actor (Policy)
a. Alpha = entropy constant, pi(a|s) = randomness of this action given Gaussian policy

distribution
b. Q(s,a) = expected value of action in current state

4

Soft-Actor Critic

1. Replay Buffer
a. Stores reward, action, and state transition
b. Updates actor and critic with batch sampled updates

2. Twin Q-networks (Critics)
a. Jointly trained Q-networks, prevents bias by taking minimum of both

5

Soft-Actor Critic

6

Data

1. Alpaca API (Best source I could find)
a. Open, Close, High, Low, Volume, Volume Weighted

2. Data: 9 years; 7 hours per day
a. 9:30, 10:30, 11:30, 12:30, 1:30, 2:30, 3:30 (ET)
b. 251 * 9 * 7 = ~15500 data points per ticker

3. Tickers: U(NASDAQ + S&P)
a. *Project not finished so only used: ["AAPL", "MSFT", "A", "AMD", "JPM"] for testing

4. Grows proportional to tickers → tickers observed by each agent must be
controlled

5. Stored in local Postgre DB for fast read

7

Features

1. Started with prices and returns for each stock
a. Sub-par performance, would stay about even or slightly negative, often converged to

not trading as best action
b. Why might this be?

4. Efficient Market Hypothesis: asset prices reflect all publicly available
information
a. Consequently, hourly/daily changes in stock prices should behave like white noise

2. Proof? Autocorrelation →AR(1) < 0
3. More meaningful information can be derived using stats

3. Formulas:
a. Window Size = take first AR(n) such that AR(n) < epsilon (I used 0.1)
b. Essentially most recent timestep where the window reveals 90% relevant info
c. Gamma (future look-ahead for agent reward) =

8

Autocorrelation

1. Autocorrelation is mathematical representation of the degree of similarity
between a given time series and a lagged version of itself over successive
time intervals.

2. AR(n) process autoregressive process is one in which the current value is
based on the immediately preceding value n values (AR(1) based on
previous)

9

Feature Engineering

1. 5-Hour Momentum:

2. Moving Average Crossover:

3. Volatility:

4. Relative Strength Index:

5. Normalized Volume:

6. Returns:

5hr SMA - 20hr SMA

Rolling Std of Returns

raw %

10

Hyperparameters

1. Slice length, batch size, network size, buffer size, eval frequency, gradient
steps, tau, gamma, learning rate, clip range, alpha, lambda, number of
tickers observed
a. Picking just 2 for each: 8192 trials required
b. Training per trial takes around 15 min on my 4090
c. About 2048 hours conservatively
d. About 85 full days
e. Impossible in a term→I had to guess and make assumptions so mine are by no

means optimal
2. Custom Walk-Forward hyperparameter tuning implementation

a. Define train, eval, and test size; eval was my step size
b. Train on [0, train], stop on [train, train + eval], test on [train + eval, train + eval + test]
c. Generically: [step * i, train + step * i]; [train + step * i, train + eval + step * i]; [train +

eval + step * i, train + eval + test + step * i]
d. Forces hyperparameters to be generalizable

11

Reward Shaping

1. How to reward?
a. Portfolio Return (including trading fees)
b. Return Compared to Benchmark
c. Risk Penalty for high volatility

2. Reward clipping for stable gradients
a. #1 Consideration: Summed clipped gradients must be positive (want smallish)

i. Negative summed gradient clip means you are ignoring more large losses
ii. Positive summed gradient clips means you are ignoring more large wins

b. Better to miss profit than have large drawdown

12

Key Finding

13

Key Finding
My Agent Even Diversification

Net ROI % -1.13 -6.93

Avg Hourly Return % <0.001 & >0 >-0.001 & <0

Daily ROI % 0.01 -0.02

Annual ROI % -1.23 -7.52

Monthly ROI % -0.10 -0.65

Annualized Sharpe 0.05 -0.21

Max DD % -21.85 -26.23

14

Key Finding

Tickers Observed ['AAPL', 'MSFT', 'A', 'AMD', 'JPM']
Slice length 72 trading days
Interval 2025-02-03 – 2025-05-16
Total clipped reward 20.71
--
 Your Agent | Even Portfolio
--
Net ROI (%) 8.58 | -1.04
Mean hourly return (%) 0.02 | 0.00
Daily ROI (%) 0.14 | 0.00
Annual ROI (%) 32.79 | -3.60
Monthly ROI (%) 2.39 | -0.30
Annualised Sharpe 1.09 | 0.05
Max drawdown (%) -14.53 | -22.59

15

Conclusion

1. Efficient Market Hypothesis in Action

2. Almost impossible to beat the market with only market data

3. Planning on making more advancements in the future

a. Transfer learning on daily data so weights are seeded with regime
detection

4. Integrate with Alpaca if I can get maintainable positive over
benchmark

16

Thank You

