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Thesis

● Goal: Build a data-driven trading strategy using land surface temperature (LST) 

from satellite imagery to anticipate heating oil price movements.

● Data:
○ NYMEX: HO=F (heating oil futures)

○ MODIS satellite LST features (rolling, lagged, seasonal anomalies)

● Methodology: 
○ PurgedKFold cross-validation for time-aware validation

○ Machine learning (ElasticNet & LightGBM) to predict returns

○ Rule-based strategy with z-score anomaly thresholds 

● Optimization: 
○ Strategy hyperparameters (lag, thresholds, volatility) 

○ Train/test window selection via walk-forward backtest

● Leveraged parallel processing and geospatial feature extraction for efficient data 

fusion at scale.
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Influence Behind the Project

● Prev. Research Project @ MSFC TEMPO Mission

○ Utilized satellite data to predict NO2 on the surface of North America
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Datasets

● Satellite
MODIS Data: MODIS/Terra 

Land Surface 

Temperature/Emissivity 

8-Day L3 Global 1km SIN 

Grid V061

● Total Predictive Features: 31

● Yahoo Finance: HO=F Price Data

● Time Horizon: 10 years

○ Start: 2015-1-1

End: 2025-1-1
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Model Selection

5

● Model Pipeline
○ Preprocess Data

○ Train Model, inside this, run 

PurgedKFolds for each split

○ Identify best fold

○ Tune hyperparameters for this fold

○ Output is optimized



6

Model Selection

● Data Preprocessing & Inference

● PurgedKFold Validation

● Elastic Net Regularization
○ Hyperparameter Tuning: 

■ Alpha and L1 Ratio

● LightGBM (Gradient Boosting) 
○ Hyperparameter Tuning: 

■ n_estimators, learning_rate, num_leaves, min_child_weight, 

min_child_samples, reg_lambda, reg_alpha, linear_tree, subsample, 

subsample_freq, colsample_bytree, colsample_bynode, linear_lambda, 

min_data_per_group, max_cat_threshold, cat_l2, cat_smooth
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Data Processing

● MODIS: Finding Missing Lat/Lon

○ Parsed through files, identified each 

tile’s horizontal index (h) and vertical 

index (v)

○ Each h, v is a 1200 x 1200pixel grid, 

1 pixel = 1 km

○ Multiply x and y by the index, then 

divide by Earth’s radius

○ Obtain lat/lon and append to df
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Data Processing

● HO=F Dataset

○ Filtered the dates to match MODIS 

dataset

○ Extracted only ‘date’ and ‘close’ price 

for each day

● Merging Issue

○ MODIS -> Every 8 Days

○ HO=F -> Every day

○ Fix:

○ Assign/Group ‘close’ point date to 

nearest MODIS date

modis_df

ho_df

● Finally, merged data into ‘merged_df’



10

Correlation Matrix

● Correlation Matrix (31 Features)
○ White: 0.0

○ Red: 1.0

○ Blue: -1.0

● Extracted 9 Features (incl. y)
○ 'date', 

○ 'close', 

○ 'volume', 

○ 'day_view_time_min',

○ 'night_view_time_min', 

○ 'clear_sky_days_min_lag7',

○ 'emis_32_max_lag7',

○ 'lst_day_1km_mean_lag7',

○ 'lst_day_1km_mean_roll7'
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Model Selection
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min_data_per_group, max_cat_threshold, cat_l2, cat_smooth



PurgedKFold Validation

● Cross Val. Strat. (3-fold, 30-day gap)

○ Prevents data leakage by leaving a 

buffer between training and test sets

○ Mimics real-world trading where future 

data is unavailable

● Time-aware Splitting

○ Ensures train and test sets are strictly 

ordered in time

○ Improves generalization for time-series 

prediction

● Random Feature Dropout

○ Randomly removes some input features during 

training

○ Prevents overfitting and forces the model to use 

diverse signals

● Gaussian Noise Injection

○ Adds small random fluctuations to features

○ Simulates real-world signal noise and improves 

model robustness
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Elastic Net Regularization

Why Elastic Net: 

● Combines L1 (Lasso) and L2 (Ridge) penalties to 

handle multicollinearity and prevent overfitting.

Purpose in This Project: 

● Regularizes noisy satellite-derived features 

(e.g., rolling temps, lagged values).

Cross-Validation Method: 

● Used PurgedKFold to avoid data leakage 

across time in model evaluation.

Model Behavior: 

● Predictions generally stable but biased toward 

mean; struggles with extreme values.

Diagnostics Included: 

● Predicted vs Actual plots for each fold

○ CV1 RMSE: 0.6249

○ CV2 RMSE: 0.5564

○ CV3 RMSE: 1.323

Elastic Net adds robustness but may 

underreact to rare but impactful anomalies.
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LightGBM

Interpretation

● Better than Elastic Net Regularization

● Slight underestimation in 

volatile/high-price regimes

● Can be fine-tuned further or blended 

with ElasticNet

LightGBM (Light Gradient Boosting Machine)

● A powerful, high-performance machine learning 

algorithm for regression and classification

● Randomized hyperparameter search

Gradient Boosting Framework

● Builds decision trees sequentially, each one 

improving on the previous

● Focuses learning on the hard-to-predict samples 

(boosting)

Why Use LightGBM in This Project?

● Handles large datasets and high-dimensional 

features efficiently

● Automatically captures nonlinear relationships

between variables

● Compatible with PurgedKFold and custom noise 

injection, making it ideal for time-series modeling
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Model Selection

● Correlation Matrix 
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■ Alpha and L1 Ratio

● LightGBM (Gradient Boosting) 
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subsample_freq, colsample_bytree, colsample_bynode, linear_lambda, 

min_data_per_group, max_cat_threshold, cat_l2, cat_smooth
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Elastic Net Regularization & LightGBM Evaluation

Sharpe Ratio: 0.27 Total Return: 30.84%

Annual Return: 2.78%
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Z-Score Anomaly Testing

● Purpose: Detect days when satellite temperature 

data deviates significantly from seasonal norms.

● Method: Calculated seasonal average 

temperature per day of year 
○ Computed anomalies: deviation from seasonal 

average

○ Applied Z-score: standardized the anomaly over 

a rolling window

anomaly - rolling mean

rolling std
z =

● Signal Logic:

○ If Z > threshold → signal overheat → short position

○ If Z < threshold → signal cold anomaly → long 

position
● Tuned Hyperparameters:

○ Lag days, Z thresholds, rolling window size, and region weights
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Z-Score Anomaly Testing

● Initial Strategy Found:

○ Lag Days: 7

○ Z-Score Thresh: High = +1.5

Low = −1.5

○ Volatility Window: 10 days

○ Alpha Signal: Refinery = 0.7

Northeast = 0.3

● Total Return: 33.50%

● Annual Return: 2.99%

● Sharpe Ratio: 0.43
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Z-Score Anomaly Testing

● Best Strategy Found:

○ Lag Days: 5

○ Z-Score Thresh: High = 1.5

Low = -1.5

○ Volatility Window: 5 days

○ Alpha Signal: Refinery = 0.5

Northeast = 0.5

● Total Return: 33.50%

● Annual Return: 2.99%

● Sharpe Ratio: 0.43

● Tuned Hyperparameters!!
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Z-Score Anomaly Testing Results

Consistent Growth: Alpha strategy steadily 

outperformed buy-and-hold over time.

Moderate Drawdowns: Some sharp dips 

(up to −14%), but recovered steadily.

Lower Exposure to Spikes: Strategy 

avoids extreme market rallies and crashes.

Drawdowns indicate risk: They show 

how far the portfolio falls from its peak.

Position Size: Adapts based on 

temperature anomalies and market volatility.

Alpha Strategy: Includes a stop-loss: halts 

trading when drawdown exceeds −10%.



Walk-Forward Test

Z-Test Walk-Forward

● Best Train Window: 540

● Best Test Window: 60

● Total Return: 46.78%

● Annual Return: 5.17%

● Sharpe Ratio: 0.91

LightGBM Walk-Forward

● In-progress, not looking good
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Conclusion

● Elastic Net Regularization (ENet)

○ Sharpe Ratio: 0.27 | Total Return: 30.84% | Annual Return: 2.78%

○ Stable but conservative predictions; under reacts to rare extremes.

● LightGBM (Gradient Boosting)

○ Stronger than ENet; handles nonlinear relationships.

○ Sharpe Ratio: 0.27 | Total Return: 30.84% | Annual Return: 2.78%

○ Underperforms in walk-forward testing (in-progress).

● Z-Score Anomaly Strategy

○ Best Result: Sharpe Ratio: 0.91 | Total Return: 46.78% | Annual Return: 5.17%

○ Combines seasonal anomaly detection + volatility-aware weighting.

● Drawdowns

○ Strategy includes 10% stop-loss; protects against prolonged declines.

○ Maximum drawdown: ~14%; recovered over time.
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Next Steps

● Refine LightGBM walk-forward retraining to improve robustness.

● Explore model blending (e.g., ENet + LightGBM + anomaly rule).

● Add alternative satellite features (e.g., snow cover, cloud masks).

● Automate retraining pipeline and real-time deployment prototype.

● Apply framework to other commodities (e.g., natural gas, electricity).
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GitHub Repo

https://github.com/spacelertser2004

https://github.com/spacelertser2004

https://github.com/spacelertser2004
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Thank You
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Appendix
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