Using Satellite-Derived Surface Temperature Near Oil Refineries to Predict Heating Oil Prices

Matt Lertsmitivanta

Agenda

- Thesis & Objectives
- Influence Behind the Project
- Model Selection
- Conclusion
- Next Steps

Thesis

Goal: Build a data-driven trading strategy using land surface temperature (LST) from satellite imagery to anticipate heating oil price movements.

• Data:

- NYMEX: HO=F (heating oil futures)
- MODIS satellite LST features (rolling, lagged, seasonal anomalies)

Methodology:

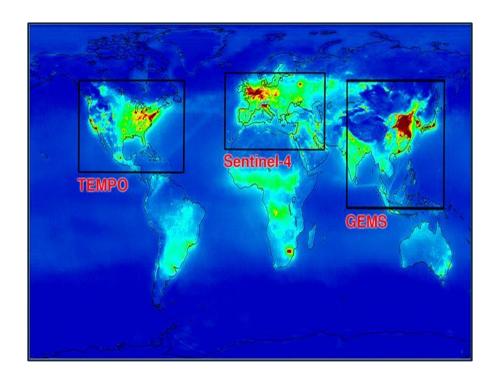
- PurgedKFold cross-validation for time-aware validation
- Machine learning (ElasticNet & LightGBM) to predict returns
- Rule-based strategy with z-score anomaly thresholds

• Optimization:

- Strategy hyperparameters (lag, thresholds, volatility)
- Train/test window selection via walk-forward backtest
- Leveraged parallel processing and geospatial feature extraction for efficient data fusion at scale.

Influence Behind the Project

- Prev. Research Project @ MSFC TEMPO Mission
 - Utilized satellite data to predict NO2 on the surface of North America



Datasets

Satellite

MODIS Data: MODIS/Terra

Land Surface

Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061

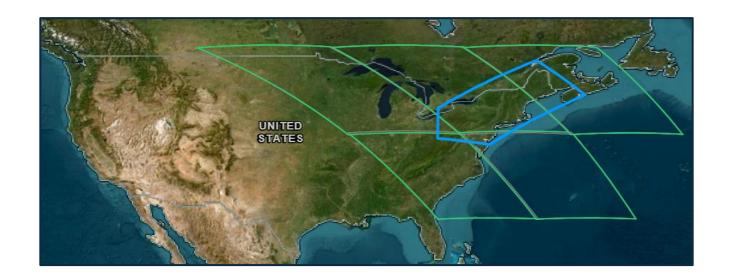
Total Predictive Features: 31

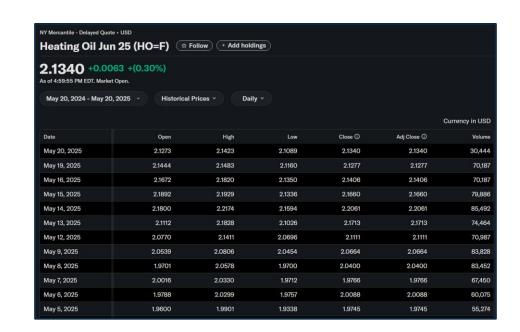
Yahoo Finance: HO=F Price Data

• Time Horizon: 10 years

Start: 2015-1-1

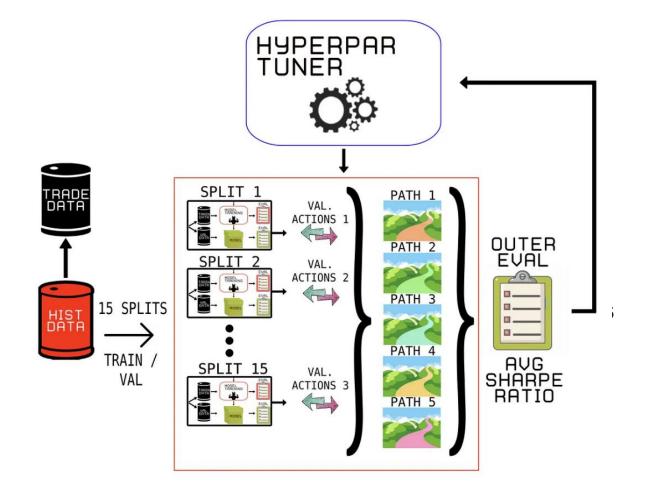
End: 2025-1-1



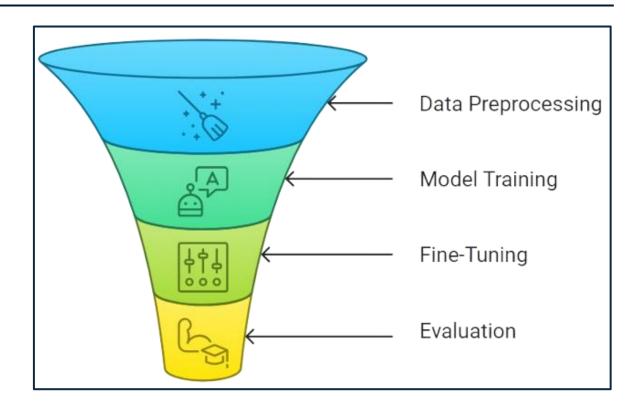


Model Pipeline

- Preprocess Data
- Train Model, inside this, run PurgedKFolds for each split
- Identify best fold
- Tune hyperparameters for this fold
- Output is optimized

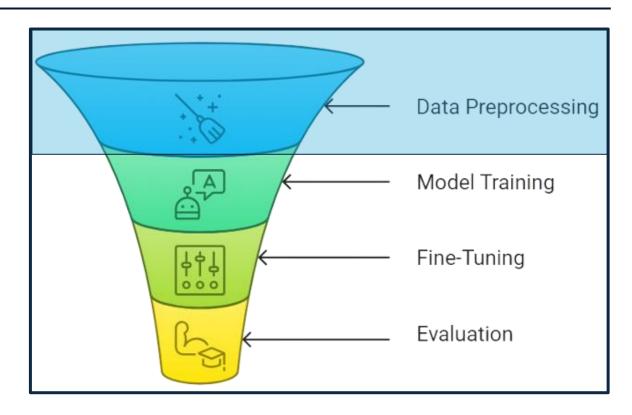


- Data Preprocessing & Inference
- PurgedKFold Validation
- Elastic Net Regularization
 - Hyperparameter Tuning:
 - Alpha and L1 Ratio
- LightGBM (Gradient Boosting)
 - Hyperparameter Tuning:
 - n_estimators, learning_rate, num_leaves, min_child_weight, min_child_samples, reg_lambda, reg_alpha, linear_tree, subsample, subsample_freq, colsample_bytree, colsample_bynode, linear_lambda, min_data_per_group, max_cat_threshold, cat_l2, cat_smooth



Data Preprocessing & Inference

- PurgedKFold Validation
- Elastic Net Regularization
 - Hyperparameter Tuning:
 - Alpha and L1 Ratio
- LightGBM (Gradient Boosting)
 - Hyperparameter Tuning:
 - n_estimators, learning_rate, num_leaves, min_child_weight, min_child_samples, reg_lambda, reg_alpha, linear_tree, subsample, subsample_freq, colsample_bytree, colsample_bynode, linear_lambda, min_data_per_group, max_cat_threshold, cat_l2, cat_smooth



Data Processing

- MODIS: Finding Missing Lat/Lon
 - Parsed through files, identified each tile's horizontal index (h) and vertical index (v)
 - Each h, v is a 1200 x 1200pixel grid,
 1 pixel = 1 km
 - Multiply x and y by the index, then divide by Earth's radius
 - Obtain lat/lon and append to df

```
def extract tile indices(filename):
   Extracts MODIS tile indices h, v from a granule id or filename.
   match = re.search(r'\.h(\d{2})v(\d{2})\.', filename)
   if match:
       return int(match.group(1)), int(match.group(2))
   return None, None
def modis tile to latlon(h, v, rows=1200, cols=1200, pixel size=1000):
   Generates latitude and longitude arrays for a given MODIS tile
   using the Sinusoidal projection.
   EARTH RADIUS = 6371007.181 # meters
                                # Sinusoidal grid origin (upper-left)
   origin x = -20015109.354
   origin y = 10007554.66
   tile dim m = rows * pixel size
   x0 = origin x + h * tile dim m
   y0 = origin y - v * tile dim m
   x = x0 + (np.arange(cols) + 0.5) * pixel size
   y = y0 - (np.arange(rows) + 0.5) * pixel size
   xv, yv = np.meshgrid(x, y)
   lon = np.degrees(xv / EARTH_RADIUS)
   lat = np.degrees(np.arcsin(yv / EARTH RADIUS))
   return lat, lon
```

Data Processing

HO=F Dataset

- Filtered the dates to match MODIS dataset
- Extracted only 'date' and 'close' price for each day

Merging Issue

- MODIS -> Every 8 Days
- HO=F -> Every day
- o Fix:
- Assign/Group 'close' point date to nearest MODIS date
- Finally, merged data into 'merged_df'

ho df

	date	Open	High	Low	Close	Adj Close	Volume
0	31-Dec-24	2.3105	2.3315	2.2892	2.3206	2.3206	54430
1	30-Dec-24	2.2405	2.3173	2.2397	2.2995	2.2995	19299
2	27-Dec-24	2.2065	2.2564	2.1990	2.2448	2.2448	17139
3	26-Dec-24	2.2230	2.2494	2.1969	2.2053	2.2053	17639
4	24-Dec-24	2.2387	2.2498	2.2169	2.2215	2.2215	15731
2510	8-Jan-15	1.6970	1.7195	1.6766	1.7110	1.7110	67237
2511	7-Jan-15	1.7020	1.7256	1.6715	1.6999	1.6999	75085
2512	6-Jan-15	1.7500	1.7629	1.7025	1.7262	1.7262	73014
2513	5-Jan-15	1.7955	1.7996	1.7386	1.7492	1.7492	66059
2514	2-Jan-15	1.8533	1.8774	1.7871	1.7957	1.7957	46068

modis df

	date	granule_id
77	2024-12-26	MOD11A2.A2024361.h12v05.061.2025004043511.hdf
82	2024-12-18	MOD11A2.A2024353.h11v05.061.2024366031841.hdf
87	2024-12-10	MOD11A2.A2024345.h11v04.061.2024359030232.hdf
92	2024-12-02	MOD11A2.A2024337.h11v05.061.2024347151051.hdf
97	2024-11-24	MOD11A2.A2024329.h12v04.061.2024338044719.hdf

Correlation Matrix

Correlation Matrix (31 Features)

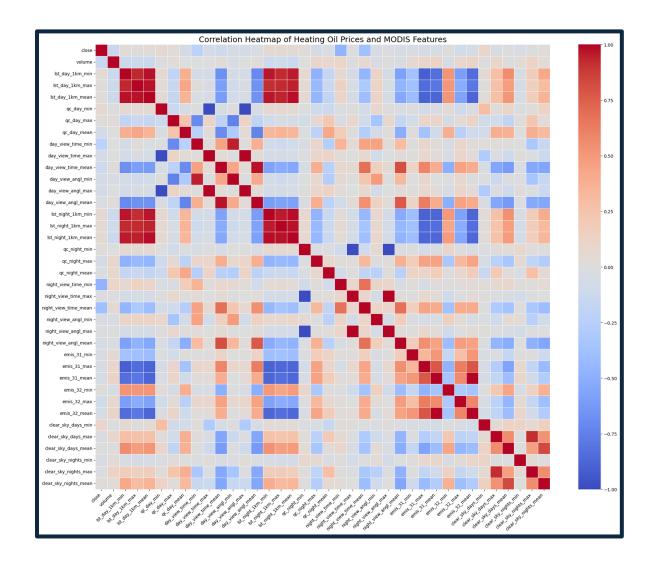
White: 0.0

o **Red**: 1.0

o Blue: -1.0

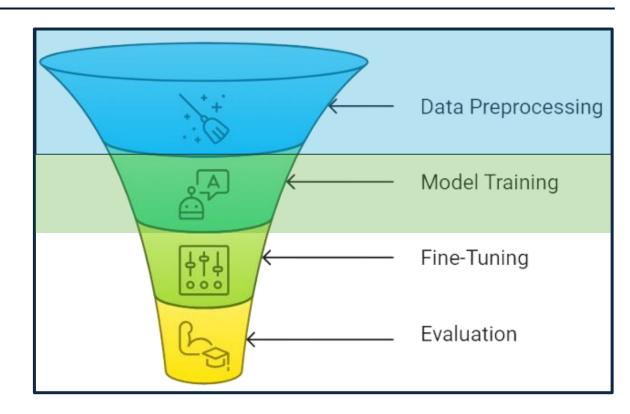
Extracted 9 Features (incl. y)

- o 'date',
- o 'close',
- 'volume',
- 'day_view_time_min',
- 'night_view_time_min',
- 'clear_sky_days_min_lag7',
- 'emis_32_max_lag7',
- 'lst_day_1km_mean_lag7',
- 'lst_day_1km_mean_roll7'



Correlation Matrix

- PurgedKFold Validation
- Elastic Net Regularization
 - Hyperparameter Tuning:
 - Alpha and L1 Ratio
- LightGBM (Gradient Boosting)
 - Hyperparameter Tuning:
 - n_estimators, learning_rate, num_leaves, min_child_weight, min_child_samples, reg_lambda, reg_alpha, linear_tree, subsample, subsample_freq, colsample_bytree, colsample_bynode, linear_lambda, min_data_per_group, max_cat_threshold, cat_l2, cat_smooth



PurgedKFold Validation

Cross Val. Strat. (3-fold, 30-day gap)

- Prevents data leakage by leaving a buffer between training and test sets
- Mimics real-world trading where future data is unavailable

Time-aware Splitting

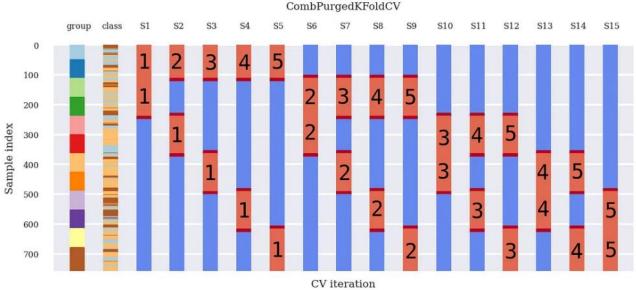
- Ensures train and test sets are strictly ordered in time
- Improves generalization for time-series
 prediction

Random Feature Dropout

- Randomly removes some input features during training
- Prevents overfitting and forces the model to use diverse signals

Gaussian Noise Injection

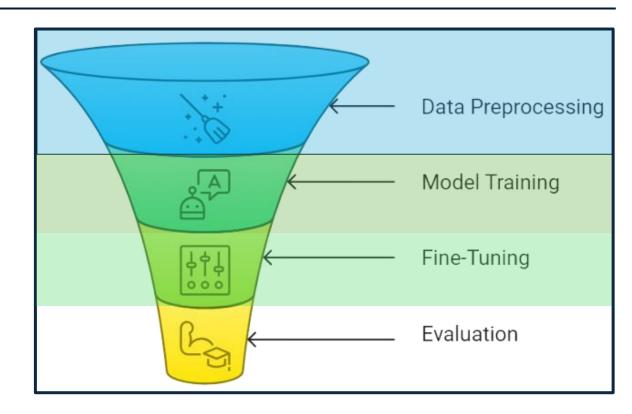
- Adds small random fluctuations to features
- Simulates real-world signal noise and improves model robustness



Correlation Matrix

PurgedKFold Validation

- Elastic Net Regularization
 - Hyperparameter Tuning:
 - Alpha and L1 Ratio
- LightGBM (Gradient Boosting)
 - Hyperparameter Tuning:
 - n estimators, learning rate, num leaves, min child weight, min child samples, reg lambda, reg alpha, linear tree, subsample, subsample_freq, colsample_bytree, colsample_bynode, linear_lambda, min data per group, max cat threshold, cat I2, cat smooth



Elastic Net Regularization

Why Elastic Net:

 Combines L1 (Lasso) and L2 (Ridge) penalties to handle multicollinearity and prevent overfitting.

Purpose in This Project:

 Regularizes noisy satellite-derived features (e.g., rolling temps, lagged values).

Cross-Validation Method:

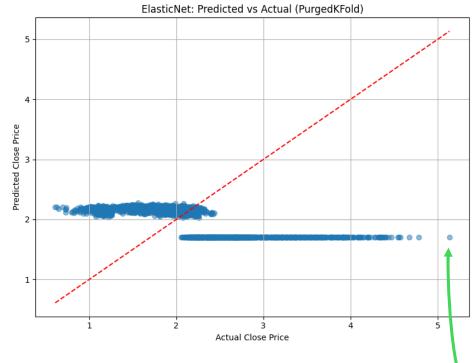
 Used PurgedKFold to avoid data leakage across time in model evaluation.

Model Behavior:

 Predictions generally stable but biased toward mean; struggles with extreme values.

Diagnostics Included:

Predicted vs Actual plots for each fold



CV1 RMSE: 0.6249

CV2 RMSE: 0.5564

CV3 RMSE: 1.323

Elastic Net adds robustness but may underreact to rare but impactful anomalies.

LightGBM

LightGBM (Light Gradient Boosting Machine)

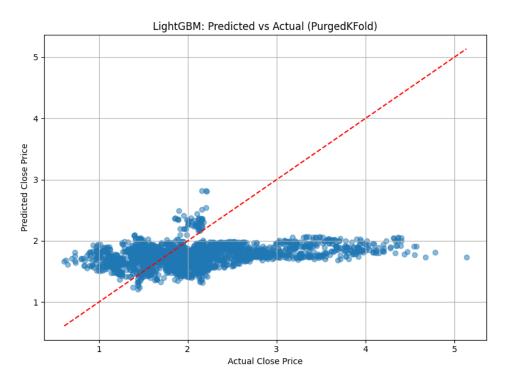
- A powerful, high-performance machine learning algorithm for regression and classification
- Randomized hyperparameter search

Gradient Boosting Framework

- Builds decision trees sequentially, each one improving on the previous
- Focuses learning on the hard-to-predict samples (boosting)

Why Use LightGBM in This Project?

- Handles large datasets and high-dimensional features efficiently
- Automatically captures nonlinear relationships between variables
- Compatible with **PurgedKFold** and **custom noise injection**, making it ideal for time-series modeling



Interpretation

- Better than Elastic Net Regularization
- Slight underestimation in volatile/high-price regimes
- Can be fine-tuned further or blended with ElasticNet

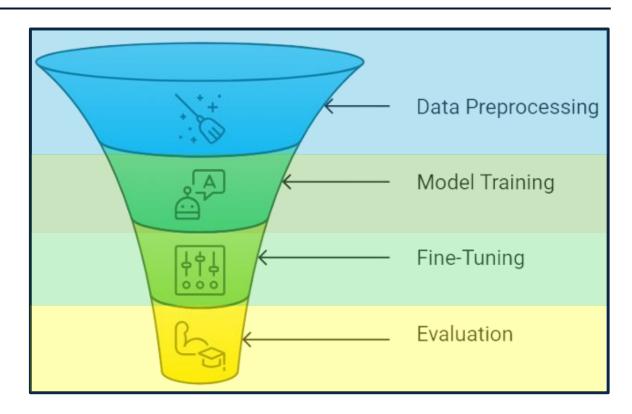
Correlation Matrix

PurgedKFold Validation

Elastic Net Regularization

- Hyperparameter Tuning:
 - Alpha and L1 Ratio

- Hyperparameter Tuning:
 - n estimators, learning rate, num leaves, min child weight, min child samples, reg lambda, reg alpha, linear tree, subsample, subsample_freq, colsample_bytree, colsample_bynode, linear_lambda, min data per group, max cat threshold, cat I2, cat smooth



Elastic Net Regularization & LightGBM Evaluation

Sharpe Ratio: 0.27 **Total Return**: 30.84%

Annual Return: 2.78%

Z-Score Anomaly Testing

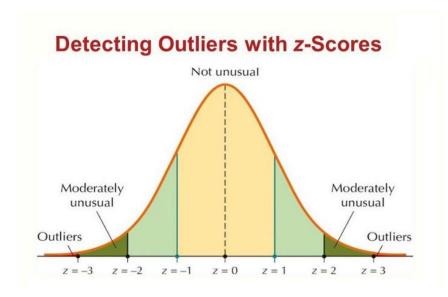
- Purpose: Detect days when satellite temperature data deviates significantly from seasonal norms.
- Method: Calculated seasonal average temperature per day of year
 - Computed anomalies: deviation from seasonal average
 - Applied Z-score: standardized the anomaly over a rolling window

Signal Logic:

- If Z > threshold → signal overheat → short position
- If Z < threshold → signal cold anomaly → long

• Tuned Hyperparameters:

Lag days, Z thresholds, rolling window size, and region weights



$$z = \frac{\text{anomaly - rolling mean}}{\text{rolling std}}$$

Z-Score Anomaly Testing

• Initial Strategy Found:

- Lag Days: 7
- Z-Score Thresh: High = +1.5

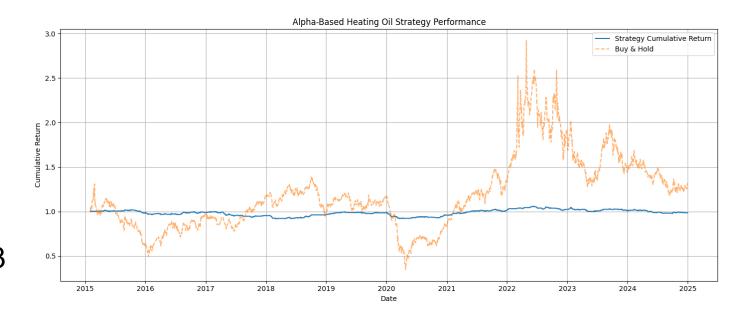
Low = -1.5

- Volatility Window: 10 days
- Alpha Signal: Refinery = 0.7

Northeast = 0.3

• Annual Return: 2.99%

• Sharpe Ratio: 0.43



Z-Score Anomaly Testing

Tuned Hyperparameters!!

Best Strategy Found:

- Lag Days: 5
- Z-Score Thresh: High = 1.5

$$Low = -1.5$$

- Volatility Window: 5 days
- Alpha Signal: Refinery = 0.5
 Northeast = 0.5

• Total Return: 33.50%

Annual Return: 2.99%

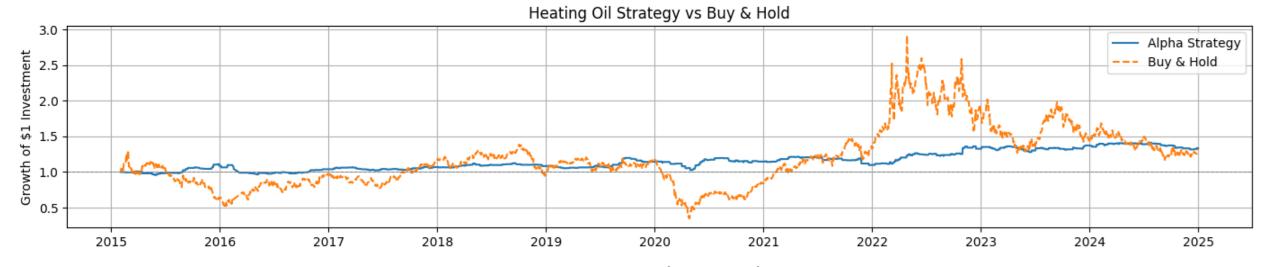
• Sharpe Ratio: 0.43

Z-Score Anomaly Testing Results

Consistent Growth: Alpha strategy steadily outperformed buy-and-hold over time.

Position Size: Adapts based on temperature anomalies and market volatility.

Lower Exposure to Spikes: Strategy avoids extreme market rallies and crashes.



Drawdowns indicate risk: They show how far the portfolio falls from its peak.

Moderate Drawdowns: Some sharp dips (up to -14%), but recovered steadily.

Alpha Strategy: Includes a stop-loss: halts 21 trading when drawdown exceeds -10%.

Walk-Forward Test

Z-Test Walk-Forward

• Best Train Window: 540

• Best Test Window: 60

• **Total Return:** 46.78%

• Annual Return: 5.17%

• Sharpe Ratio: 0.91

LightGBM Walk-Forward

In-progress, not looking good

Conclusion

Elastic Net Regularization (ENet)

- Sharpe Ratio: 0.27 | Total Return: 30.84% | Annual Return: 2.78%
- Stable but conservative predictions; under reacts to rare extremes.

LightGBM (Gradient Boosting)

- Stronger than ENet; handles nonlinear relationships.
- Sharpe Ratio: 0.27 | Total Return: 30.84% | Annual Return: 2.78%
- Underperforms in walk-forward testing (in-progress).

Z-Score Anomaly Strategy

- Best Result: Sharpe Ratio: 0.91 | Total Return: 46.78% | Annual Return: 5.17%
- Combines seasonal anomaly detection + volatility-aware weighting.

Drawdowns

- Strategy includes 10% stop-loss; protects against prolonged declines.
- Maximum drawdown: ~14%; recovered over time.

Next Steps

- Refine LightGBM walk-forward retraining to improve robustness.
- Explore model blending (e.g., ENet + LightGBM + anomaly rule).
- Add alternative satellite features (e.g., snow cover, cloud masks).
- Automate retraining pipeline and real-time deployment prototype.
- Apply framework to other commodities (e.g., natural gas, electricity).

https://github.com/spacelertser2004

Thank You

Appendix